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Introduction to CMB data

Image credit: NASA / WMAP Science Team
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Cosmological Background

The Cosmic Microwave Background(CMB) is the radiation from the
universe since 380,000 years from its birth.

In Big Bang cosmology, the CMB is an electromagnetic radiation
residue from its earliest stage.

The CMB depicts variations which correspond to different regions and
represent the roots for all future formation including the solar system,
stars and galaxies in the present world.

The unforeseen discovery of the CMB was done by Arno Penzias and
Robert Wilson who were American radio astronomers.
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Cosmological Background

Earlier, the universe was very hot and dense in nature.

After the big bang, the universe is expanding and cooling down and
had been possible for the atoms to reformulate again after around
400,000 years of its life.

This phenomenon is known as Epoch of combination and since
that time photons have been able to move freely escaping from the
opaque of the early universe.

The first light which eliminated from this process is known as the
cosmic microwave background.
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Missions

Image credit: https://jgudmunds.wordpress.com
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Planck Mission

In the year 2009, the European Space Agency launched the mission
Planck in order to study the CMB thoroughly.

The frequency range captured by the Planck mission is much wider
and its sensitivity is higher than the previous missions of Cosmic
Background Explorer(COBE) and Wilkinson Microwave Anisotropy
Probe (WMAP).

Current CMB data are at 5 arc-minutes resolution on the sphere.

Contains 50,331,648 data collected by Planck mission.
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What does CMB data look like?

Obtained using the newly developed rcosmo package.
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Next Generation Missions

Next Generation Explorer: CMB-S4

(Simons Foundations, NSF and US Department of Energy)
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CMB data are available as FITS(Flexible Image Transport System) files
stored in HEALPix (Hierarchical Equal Area Isolatitude Pixelation). Each
pixel describes distinct location, intensity, polarisation and other CMB
attributes.

The HEALPix format has numerous advantages, compared to other
spherical data representations:

equal area pixels,

hierarchical tessellations of the sphere,

iso-latitude rings of pixels.

It is used for an efficient organization of spherical data in a computer
memory and providing fast spherical harmonic transforms, search and
numerical analysis of spherical data.
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What does CMB Data Frame look like?

Figure: Cartesian Coordinates View Figure: Spherical Coordinates View
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(a) HEALPix nested ordering (b) HEALPix ring ordering
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Random Fields on a Sphere

The spherical surface in R3 (as a two-dimensional mainfold) with a
given radius r > 0 is

s(r) = {x ∈ R3 : ‖x‖ = r}

Statistical model: CMB can be viewed as a single realization of a
random field on a sphere.

A spherical random field denoted by,
ξ = {ξ(r , θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, r > 0} is a stochastic
function defined on the sphere s(r).

We consider a real-valued spherical field such that its covariance
function depends on the geodesic (or angular) distance between the
two points on the sphere.
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Random Fields on a Sphere

Definition 1

A random field ξ(x), x ∈ T where T ⊆ Rn is called Gaussian if for any
x (1), ..., x (r) ∈ T , the joint distribution of random variables
(ξ(x (1)), ..., ξ(x (r)))

′
are Gaussian.

Definition 2

A real random field ξ(u), u ∈ s(1) with E [ξ2(u)] <∞ and E [ξ(u)] = 0 is
called isotropic on a sphere if,

E [ξ(u)ξ(v)] = B(cos θ),

u, v ∈ s(1), depends only on the geodesic (angular) distance cos θ between
u and v .
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Random Fields on a Sphere

We get the following representation of covariance functions of the
isotropic random field on the sphere.

B(cos θ) =
1

|s(1)|

∞∑
m=0

bmh(m, n)
C v
m(cos θ)

C v
m(1)

, (1)

where C v
m,m = 0, 1, ... are the Gegenbauer polynomials.

The representation for B(cos θ) implies the spectral decomposition of
the isotropic field on the sphere ξ(u), u ∈ s(1), itself. That is, there
exists a real-valued sequence of random variables ηlm such that

ξ(u) =
∞∑

m=0

h(m,n)∑
l=1

S l
m(u)ηlm, (2)

where S l
m are spherical harmonics, and

E [ηlm] = 0, E [ηlmη
q
p ] = bmδ

p
mδ

q
l .
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Multifractality

The concept of multifractality initially emerged in the context of
measures where Mandelbrot showed the significance of scaling
relations in the setting of turbulence modelling.

Multifractal analysis compromises with the local scaling
characteristics of functions distinguished by Hausdorff dimension of
classes of points which has the identical Hölder exponent.

Rényi function which is also known as the deterministic partition
function plays a key role in multifractal analysis.

Leonenko and Shieh (2013) computed the Rényi function for three
models of the multifractal random fields and showed some major
schemes for the Rényi function that reveal the multifractality of
homogeneous and isotropic data.
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The Rényi function

The Rényi function of µ on s2(1) can be defined as

T (q) = lim inf
m→∞

log2 E
∑

l µ(S
(m)
l )q

log2|S (m)
l |

, (3)

where {S (m)
l , l ,m}, l = 0, 1, ..., 2m − 1 and m = 1, 2, ..., is the mesh

formed by the mth level dyadic decomposition of the spherical surface
s2(1).

For the CMB data analysis, we use µ(Sm
l ) which equals the

cumulative CMB intensity over Sm
l .

The statistical estimator T̂ (q) is obtained using the equation (3) and
for large values of m.
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Known results about the Rényi function

Model 1: Log-Normal Scenario

T (q) = q

(
1 +

σ2
Y

4 log b

)
− q2

(
σ2
Y

4 log b

)
− 1, q ∈ [1, 2].

Model 2: Log-Gamma Scenario

T (q) = q

(
1 +

1

n log b
log

1

(1− 1
λ )β

)
+

(
β

n log b

)
log
(

1− q

λ

)
− 1,

where q ∈ Q = {0 < q < λ, λ > 2} ∩ [1, 2] ∩ Lβ,λ.

Model 3: Log-Negative-Inverted-Gamma Scenario

T (q) = q

1 +
cU log 2λβ

Γ(β)

n log b

− 1

n log b
log{qβ/2Kβ(2

√
qλ)} −

1 +
log 2λβ/2

Γ(β)

n log b

 ,

where q ∈ Q = [1, 2] ∩ Lβ,λ.
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Computing T̂ (q) for real data

The estimator of the Rényi function was calculated for real
cosmological data.
First the estimator was computed for the whole sky and then for
different window sizes located at different places of the sphere.
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Figure: For a very small window
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Computing T̂ (q) for real data
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Figure: Plots of Sample Rényi function with the fitted models
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Simulation of Random Fields

There are numerous cases with no explicit expression form for the
Rényi function.
Random field simulations can be used to obtain and study random
fields.
One can simulate random fields for different theoretical models and
obtain empirical Rényi function.

Figure: Realization of a random field with exponential covariance model
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Computing T̂ (q) for real and simulated data

T̂ (q) was computed for a large window area in both real CMB data
and simulated data from the exponential covariance model.
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Figure: For real data
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Hölder Exponent

Used to measure roughness in a rigorous mathematical way.

If the data are multifractional, H(t) 6= constant, t is a location on S2.

Definition 3

Let Y (·, ·)’s be observations collected on a Healpix grid on the sphere. We
define the Hölder exponent as,

H(t) = lim
N→∞

1

2

(
d(1− γ)− logVN(t)

logN

)
, (4)

where

VN(t) =
∑

p∈VN(t)

(∑
k∈F

dkY

(
p + k

N
,
p + k

N

))2

.

The estimator Ĥ(t) is obtained using the equation (4) for large N.
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Computing Hölder Exponent for real CMB data

Figure: Plot of Ĥ(t) for a sample of cold and warm areas

R.Nanayakkara Stochastic modelling and Statistical Analysis of Spatial Data 24 / 28



Conclusions

According to the computed T̂ (q), we don’t have multifractality when
considered the real CMB data.

Although we considered different window sizes of the sphere, we don’t have
evidence to suggest that we have multifractality since the deviation is not
substantial.

When considered a very small window of the sphere, the sample Rényi
function gives a parabolic shape depicting that we have a very minor
multifractality in very small scales of the sphere.

It seems that the CMB data are unifractal.

According to the computed pointwise Hölder Exponent values, we have a
positive sign indicating multifractionality in CMB data.
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Future Work

To investigate multifractality:
- To obtain explicit Rényi functions for different statistical models.
- To develop R package for cases where theoretical models and Rényi
functions are unknown.

To study multifractionality of cosmic microwave background data.

To study statistical properties of spherical random fields(test for
non-Gaussianity).

To investigate high frequency asymptotics for angular spectrum.
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Thank you
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