A Study on Road Accidents in Kurunegala District in year 2014

D.E.R.S. Nanayakkara Department of Statistics, Faculty of Science, University of Colombo

Introduction

- A road accident occurs when a vehicle collides with another vehicle, pedestrian, animal or with a stationary object
- Traffic collisions may result in injury, death, vehicle damage, and property damage
- Worldwide, motor vehicle collisions lead to death and disability as well as financial costs to both society and the individuals involved

Objectives

 To identify the factors affecting accident severity in Kurunegala district

 To make a comparison between the factors affecting accident severity in urban and rural areas of Kurunegala district

Significance of the study

- Many types of road users are daily subjected to a considerable number of road accidents
- The loss incurred due to these various types of accidents is immense
- Limited research is available on the field of road accidents in Sri Lanka
- Due to Kurunegala district's status as a cross roads district, more severe accidents take place daily

Data

Data Source

- Road accident data for year 2014, collected according to the "297-B" form by the police officers was gained from Kurunegala Traffic Division
- The data base consists of four separate sheets namely,
- 1. Attendant Circumstances
- 2. Casualty Details
- 3. PNT_Accs
- 4. Vehicle Details

Methodology

Data Pre Processing

OtherCrashi -	AlcoholTest 🝷	DriverRideratFault 👻	Research Purpose 👻	🖊 Accident Ke 👻 Vehicle Ref	🝷 Element Typ 🝷	Vehicle Reg 🔻	Vehicle Yea 👻	Age of Vehi 👻 VehicleOwr	 Direction of - 	Driver/Pede
0	3	1	0	14769	1 05	CPMO-4168	0	0 1	S	1
0	3	2	0	14769	2 19	PTR110	0	0 2	N	1
0	1	1	0	14770	2 05	MOPED	0	0 1	W	1
D	1	2	0	14771	1 09	NWNB-0824	0	0 1	W	1
D	1	1	0	14772	1 05	127-5319	0	0 1	W	1
D	1	2	0	14772	2 04	0	0	0 1	W	1
D	1	1	0	14773	1 03	NWGK3162	0	0 1	W	1
D	1	2	0	14773	2 05	NWBAR1694	2012	2 1	W	2
D	1	1	0	14774	1 06	SPYI-3210	0	0 1	N	1
D	1	2	0	14774	2 05	NWBAI7548	2013	11	Ν	1
D	1	1	0	14775	1 00	0	0	0 0	E	0
0	1	2	0	14776	1 03	NCGQ-7106	2002	12 1	E	1
D	1	1	0	14777	1 06	NWQW-7905	2008	6 1	N	1
D	1	2	0	14778	1 05	NWGH-4732	2001	13 1	S	1
D	1	1	0	14779	1 03	WPLK-1102	2010	4 1	NE	1
0	1	2	0	14780	1 09	NWHY-1445	2009	5 1	SW	1
D	1	1	0							
0	1	2	0							
D	1	1	0							
D	1	2	0							
)	1	1	0							

Number of 1	HumanPreC 🗸	HumanPreC 🔻	PedPreCrasl -	RoadPreCra 🔻	VehiclePre(🔻	CrashFactor 🔻	OtherCrashi 🔻	AlcoholTest 🔻	DriverRider 🛪	Research Pu 🔻
	0 01	00	0	0	0	7	0	3	1	0
	0 02	00	0	0	0	0	0	3	1	0
	0 02	04	0	0	0	0	2	3	1	0
	0 02	03	0	0	0	0	0	3	1	0
	1 02	00	0	0	0	7	0	3	1	0
	0 03	00	0	0	0	0	0	3	1	0
	1 02	00	0	0	1	0	0	3	1	0
	6 03	00	0	0	0	7	0	3	1	0
	02	00	0	0	0	7	0	3	1	0
	01	02	0	0	1	7	0	3	1	0
	0 02	00	0	0	0	0	2	3	1	0
1	2 02	00	0	1	1	0	1	3	1	0
	0 02	00	0	1	1	0	1	3	1	0
	0 02	00	0	1	1	0	1	3	1	0
	7 02	00	0	1	1	0	1	3	1	0
	2 02	00	0	1	1	0	1	3	1	0

Continued...

Accident Key 👻	Number of ۱ 🗸	Number of (👻	DSDivision -
14498	2	1	24
14500	2	1	24
14501	2	2	24
14502	2	1	24
14503	2	0	24
14504	2	1	24
14505	2	1	24
14506	2	1	24
14507	2	1	24
14508	2	2	24
14509	2	0	24
14510	2	1	24
14511	2	1	24
14512	2	1	24
14513	2	0	24
14514	2	2	24
14515	2	0	24
14516	2	0	24
14517	2	0	24
14518	2	2	24
14519	2	1	24
14520	2	1	24
14521	2	0	24
14522	2	1	24

	Accident Ke -	Vehicle Ref	Element Tvr +	Vehicle Reg 🗸	Vehicle Vea
-	14498		05	SPVQ-1524	2009
	14498		05	NWUQ-4632	2005
	14500		06	NWYI-2051	2011
	14500		02	NWNB-5717	2012
	14501		06	NWAA18543	2012
	14501		05	WPGX-7684	2002
	14502	1	05	NWUN-9340	2008
	14502	2	04	0	0
	14503	1	05	NWAAD3843	2012
	14503	2	02	WPNB-2697	2012
	14504	1	05	NWGQ-3188	2003
	14504	2	04	0	0
	14505	1	03	68-4376	1989
	14505	2	03	NWHT-7551	2004
	14506	1	05	NWXU-8900	2008
	14506	2	03	NWPS-2787	2012
	14507	1	01	NWKM-0219	2010
	14507	2	03	227-1031	1985
	14508	1	05	SPWP-7680	2010
	14508	2	03	NWGC-0020	2002
	14509	1	02	NWPC-4796	2010
	14509	2	03	SPLJ-4017	2009
	14510	1	06	NWYL-1982	2011
	14510	2	09	NWNB-2415	2012

	1	Accident_Key	Station_No	Date	Time	Highest_Severity	Urban_or_Rural	WorkDay_or_Holiday	Day_of_Week	Road_Surface	Weather
	2	14498	5	1	5	3	2	1	3	1	1
	3	14500	1	1	5	3	2	1	4	1	1
	4	14501	1	1	5	3	2	1	4	1	2
	5	14502	1	1	6	2	2	1	6	1	1
	6	14503	1	1	3	4	1	2	1	1	
		14504	1	1	5	3	2	1	3	1	
_	/	14505	1	1	5	3	2	1	3	1	
	9	14506	1	1	2	3	2	1	4	1	1
	10	14507	1	1	5	3	2	1	5	1	1
	11	14508	1	1	6	3	1	1	6	1	1
	12	14509	1	1	4	4	1	2	7	1	1
	13	14510	1	1	5	2	2	2	1	1	1
	14	14511	1	1	6	2	1	2	1	1	1
	15	14512	1	1	2	3	2	1	2	1	1

Missing Value Analysis

Quantified extent of missing data

Characterized types of subjects with missing data

Founded sets of variables missing on majority of subjects

> List wise deletion was performed for variables whose missing percentages were less than 5%(Acock,2005)

> > Unimportant variables whose missing percentages were very high were removed

Missing Value Percentages

Variable	Missing value percentage	Variable	Missing value percentage
Station No	0.00%	Element type	0.52%
Date	0.00%	Age of vehicle	3.32%
Time of accident	0.00%	Vehicle ownership	3.32%
Class of accident	0.00%	Direction of movement	0.70%
Urban/Rural	0.00%	Driver gender	3.14%
Workday/Holiday	0.00%	Driver age	4.80%
Day of week	0.00%	Validity of driving license	4.54%
Second collision	94.6%	Number of years since issue	3.41%
Road surface condition	0.09%	Human pre crash factor 1	30.89%
Weather	0.09%	Human pre crash factor 2	87.43%
Light condition	0.00%	Pedestrian pre crash factor	98.78%
Type of location	0.35%	Road pre crash factor	83.51%
Traffic control	0.17%	Vehicle pre crash factor	82.72%
Posted speed limit signs	0.00%	Crash factor severity	93.98%
Number of casualties	0.00%	Other factors	78.97%
Number of vehicles	0.00%	Alcohol test	0.00%

Continued...

Initial number of observations = 1166

Number of observations after creating = 1146 the data set

Number of observations after missing = 1069 value analysis

Percentage of observations removed = 6.72% due to missing value analysis

Variables of interest

1	Class of accident	Response Variable	12	Traffic control	
2	Station		13	Posted speed limit signs	Traffic Characteristics
3	Time of accident		14	Number of vehicles	Crash
4	Month of accident	General Characteristics	15	Number of casualties	Characteristics
5	Workday/Holiday		16	Element type	Vehicle Characteristics
6	Day of week		17	Driver at fault gender	
7	Urban/Rural		18	Driver at fault age	
8	Type of location		19	Validity of driving license	Driver
9	Road surface condition	Environment	20	Number of years since issue	Characteristics
10	Weather	Characteristics	21	Alcohol test	
11	Light condition				

Preliminary Analysis

■ Fatal ■ Grievous ■ Non grievous ■ Damage only

Environment characteristics

Number of vehicles

 Percentages of occurring fatal, grievous and non grievous accidents are high in single vehicle crashes

Number of casualties

- Percentage of occurring a fatal accident is high when there are more than three casualties
- Percentage of occurring a grievous accident increases with the number of casualties

Univariate Analysis

Nature of the independent variable	Test
Ordinal with same number of levels as the dependent variable	Kendall's Tau b
Ordinal with different no. of levels as the dependent variable	Kendall's Tau c
Nominal	Kruskal Wallis H
Interval scale	Spearman correlation coefficient

Multicollinearity of the explanatory variables

Ordinal logistic regression model to predict the accident severity

Applying proportional odds model to crash data

Applying continuation ratio model to crash data

Goodness of fit tests for the models

Diagnostic tests

Constructing Receiver Operator Characteristic curve

- Goodness of fit tests
 - Deviance test
 - Pearson test
 - Hosmer and Lemeshow test
- Diagnostic tests
 - Checking the adequacy of the linear predictor
 - Checking for influential observations

Models to predict the accident severity in the whole Kurunegala district

 Model 1:- Fatal vs. Grievous, non grievous and damage only

$$Log\left[\frac{P_{j,k,l,m}}{1-Q_{j,k,l,m}}\right] = \alpha_1 + \beta_j^{Station} + \beta_k^{Traffic_Control} + \beta_l^{No_Vehicles} + \beta_m^{No_Casualties}$$

where j=2,...,10 k=2,3 l=2,3 m=2,3,4

Model 2:- Grievous vs. Non grievous and damage only

$$Log\left[\frac{P_{a,b,c,d,e,f}}{1-Q_{a,b,c,d,e,f}}\right] = \alpha_2 + \beta_a^{Station} + \beta_b^{Region} + \beta_c^{Weather} + \beta_d^{No_Vehicles} + \beta_e^{No_Casualties} + \beta_f^{Element_Type}$$

where a=2,...,10 b=2 c=2,3 d=2,3 e=2,3,4 f=2,...,10

Models to predict the accident severity in urban and rural areas of Kurunegala district

For urban areas

$$Log\left[\frac{Q_{r,s,t}}{1-Q_{r,s,t}}\right] = \alpha_r + \beta^{Driverfault_age} + \beta_s^{No_Vehicles} + \beta_t^{No_Casualties}$$

For rural areas

$$Log\left[\frac{Q_{u,v,w,x,y}}{1-Q_{u,v,w,x,y}}\right] = \alpha_u + \beta_v^{Weather} + \beta_w^{No_Casualties} + \beta_x^{No_Vehicles} + \beta_y^{Element_Type}$$

Where u=1, 2 v=2, 3 w=2, 3, 4 x=2, 3 y=2, 3... 10

Odds ratios of the model 1

Odds Ratios Estimates						
Effect	Point Estimate	95% Wald Con	fidence Limits	$H_0: \psi = 1$		
		Lower	Upper	$H_1: \psi \neq 1$		
Station 4 vs. 1	13.632*	4.136	44.927	Reject H_0		
Station 9 vs. 1	9.324*	2.138	40.667	Reject H_0		
Traffic Control 3 vs.1	5.444*	1.662	17.839	Reject H_0		
No_Vehicles 2 vs. 1	0.452*	0.291	0.703	Reject H_0		
No_Casualties 4 vs. 1	3.293*	1.325	8.185	Reject H_0		

Odds ratios of the model 2

	Odds Ratios Estimates							
Effect	Point	95% Wald Con	fidence Limits	$H_0: \psi = 1$				
	Estimate	Lower	Upper	<i>H</i> ₁ : ψ ≠1				
Station 2 vs. 1	3.642*	1.729	7.67	Reject H_0				
Station 10 vs. 1	0.363*	0.176	0.747	Reject H_0				
Region 2 vs. 1	1.882*	1.273	2.783	Reject H_0				
Weather 2 vs. 1	1.863*	1.171	2.964	Reject H_0				
No_Vehicles 2 vs. 1	0.584*	0.423	0.806	Reject H_0				
No_Vehicles 3 vs. 1	0.321*	0.121	0.849	Reject H_0				
No_Casualties 2 vs. 1	2.636*	1.782	3.898	Reject H_0				
No_Casualties 3 vs. 1	3.123*	1.589	6.137	Reject H_0				
No_Casualties 4 vs. 1	7.315*	2.742	19.518	Reject H_0				

For urban areas

	Odds Ratio Estimates							
Effect	Point	95% Wald Con	fidence Limits	$H_0: \psi = 1$				
	Estimate	Lower	Upper	<i>H</i> ₁ : ψ ≠1				
No_Vehicles 2 vs 1	0.382*	0.217	0.674	Reject H_0				
No_Vehicles 3 vs 1	0.407	0.098	1.683	Do not reject H_0				
No_Casualties 2 vs 1	1.899	0.755	4.78	Do not reject H_0				
No_Casualties 3 vs 1	5.861*	1.624	21.156	Reject H_0				
No_Casualties 4 vs 1	4.233	0.639	28.047	Do not reject H_0				
Driverfault_Age	1.033*	1.011	1.055	Reject H_0				

For rural areas

	Odds Ratios Estimates							
Effect	Point	95% Wald Con	fidence Limits	$H_0: \psi = 1$				
	Estimate	Lower	Upper	$H_1: \psi \neq 1$				
Weather 2 vs 1	2.073*	1.391	3.089	Reject H_0				
No_Casualties 2 vs 1	1.711*	1.181	2.479	Reject H_0				
No_Casualties 3 vs 1	2.338*	1.249	4.375	Reject H_0				
No_Casualties 4 vs 1	5.24*	2.419	11.352	Reject H_0				
No_Vehicles 2 vs 1	0.542*	0.398	0.738	Reject H_0				

- The fatal accident percentage of Kurunegala district is higher than the overall fatal accident percentage of Sri Lanka
- The factors, 'Number of casualties', 'Number of vehicles' and 'Station' are associated with the increased accident severity at all levels
- 'Traffic control' is associated with the increased accident severity when considered fatal vs. grievous, non grievous and damage only accidents
- The factors 'Region', Weather' and 'Element type' are associated with the increased accident severity when considered grievous vs. non grievous and damage only accidents.

- There is a higher likelihood of an accident being fatal when there is no traffic control
- There is a higher possibility of an accident being fatal when it takes place within Wariyapola and Polgahawela police territories with respect to Kurunegala police territory
- The single vehicle accidents and the accidents involving three casualties are more likely to be fatal
- There is a higher possibility of an accident being grievous when it takes place within rural areas as well as in cloudy weather conditions.

Urban areas

- Number of casualties
- Number of vehicles
- Faulty driver's age

Rural areas

- Number of casualties
- Number of vehicles
- Weather
- Element type

- The single vehicle accidents have a higher likelihood of being fatal in both urban and rural areas
- There is a higher likelihood of an accident being fatal in both areas when an accident involves three casualties and the likelihood of being fatal is comparatively higher in rural areas than urban areas
- The young faulty drivers have a higher likelihood of resulting in fatal accidents within urban areas
- There is a higher possibility of an accident being fatal in cloudy weather conditions within rural areas

References

- Abeysekera, W., & Sooriyarachchi, R. (2008). A novel method for testing goodness of fit of a proportional odds model: an application to an AIDS study. *Journal of the National Science Foundation of Sri Lanka, 36,* 2.
- Acock, A. C. (2005). Working With Missing Values. Journal of Marriage and Family, 67(4), 1012-1028.
- Albert, A., & Anderson, J. (1984). On the existence of maximum likelihood estimates in logistic regression models. *Biometrika*, 71(1), 1-10.
- Dharmaratne, S. D., Jayatilleke, A. U., & Jayatilleke, A. C. (2015). Road traffic crashes, injury and fatality trends in Sri Lanka: 1938–2013. *Bulletin of the World Health Organization*, *93*(9), 640–647. http://doi.org/10.2471/BLT.14.150193
- Quddus, M. A., Wang, C., & Ison, S. G. (2009). Road traffic congestion and crash severity: econometric analysis using ordered response models. *Journal of Transportation Engineering*, 136(5), 424-435.

THANK YOU !!!

