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4 Models based on exponential transformations of Gaussian fields

5 Models based on power transformations of Gaussian fields

6 Computing multifractal spectra for the models

7 Numerical studies and the simulation methodology

8 Future Work

R.Nanayakkara Analysis of Spherical Monofractal and Multifractal Random Fields 2 / 38



Introduction to Cosmic Microwave Background data

Image credit: NASA / WMAP Science Team
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Cosmological Background

The Cosmic Microwave Background(CMB) is the radiation from the
universe since 380,000 years from its birth.

In Big Bang cosmology, the CMB is an electromagnetic radiation
residue from its earliest stage.

The CMB depicts variations which correspond to different regions and
represent the roots for all future formation including the solar system,
stars and galaxies in the present world.

The unforeseen discovery of the CMB was done by Arno Penzias and
Robert Wilson who were American radio astronomers.
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Cosmological Background

Earlier, the universe was very hot and dense in nature.

After the big bang, the universe is expanding and cooling down and
had been possible for the atoms to reformulate again after around
400,000 years of its life.

This phenomenon is known as Epoch of combination and since
that time photons have been able to move freely escaping from the
opaque of the early universe.

The first light which eliminated from this process is known as the
cosmic microwave background.
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Missions

Image credit: https://jgudmunds.wordpress.com
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Planck Mission

In the year 2009, the European Space Agency launched the mission
Planck in order to study the CMB thoroughly.

The frequency range captured by the Planck mission is much wider
and its sensitivity is higher than the previous missions of Cosmic
Background Explorer(COBE) and Wilkinson Microwave Anisotropy
Probe (WMAP).

Current CMB data are at 5 arc-minutes resolution on the sphere.

Contains 50,331,648 data collected by Planck mission.

R.Nanayakkara Analysis of Spherical Monofractal and Multifractal Random Fields 7 / 38



What does CMB data look like?

Obtained using the newly developed rcosmo package.
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Next Generation Missions

Next Generation Explorer: CMB-S4

(Simons Foundations, NSF and US Department of Energy)

R.Nanayakkara Analysis of Spherical Monofractal and Multifractal Random Fields 9 / 38



CMB data are available as FITS(Flexible Image Transport System) files
stored in HEALPix (Hierarchical Equal Area Isolatitude Pixelation). Each
pixel describes distinct location, intensity, polarisation and other CMB
attributes.

The HEALPix format has numerous advantages, compared to other
spherical data representations:

equal area pixels,

hierarchical tessellations of the sphere,

iso-latitude rings of pixels.

It is used for an efficient organization of spherical data in a computer
memory and providing fast spherical harmonic transforms, search and
numerical analysis of spherical data.
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What does CMB Data Frame look like?

Figure: Cartesian Coordinates View Figure: Spherical Coordinates View
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(a) HEALPix nested ordering (b) HEALPix ring ordering
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Random Fields on a Sphere

The spherical surface in R3 (as a two-dimensional mainfold) with a
given radius r > 0 is

s(r) = {x ∈ R3 : ‖x‖ = r}

Statistical model: CMB can be viewed as a single realization of a
random field on a sphere.

A spherical random field denoted by,
ξ = {ξ(r , θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, r > 0} is a stochastic
function defined on the sphere s(r).

We consider a real-valued spherical field such that its covariance
function depends on the geodesic (or angular) distance between the
two points on the sphere.
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Random Fields on a Sphere

Definition 1

A random field ξ(x), x ∈ T where T ⊆ Rn is called Gaussian if for any
x (1), ..., x (r) ∈ T , the joint distribution of random variables
(ξ(x (1)), ..., ξ(x (r)))

′
are Gaussian.

Definition 2

A real random field ξ(u), u ∈ s(1) with E [ξ2(u)] <∞ and E [ξ(u)] = 0 is
called isotropic on a sphere if,

E [ξ(u)ξ(v)] = B(cos θ),

u, v ∈ s(1), depends only on the geodesic (angular) distance cos θ between
u and v .
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Random Fields on a Sphere

We get the following representation of covariance functions of the
isotropic random field on the sphere.

B(cos θ) =
1

|s(1)|

∞∑
m=0

bmh(m, n)
C v
m(cos θ)

C v
m(1)

, (1)

where C v
m,m = 0, 1, ... are the Gegenbauer polynomials.

The representation for B(cos θ) implies the spectral decomposition of
the isotropic field on the sphere ξ(u), u ∈ s(1), itself. That is, there
exists a real-valued sequence of random variables ηlm such that

ξ(u) =
∞∑

m=0

h(m,n)∑
l=1

S l
m(u)ηlm, (2)

where S l
m are spherical harmonics, and

E [ηlm] = 0, E [ηlmη
q
p ] = bmδ

p
mδ

q
l .
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Multifractality

The concept of multifractality initially emerged in the context of
measures where B. Mandelbrot showed the significance of scaling
relations in the setting of turbulence modelling.

A multifractal pattern is a type of a fractal pattern that scales with
multiple scaling rules in contrast to monofractals that have only
scaling rule and it is a fractal scheme where its dynamics cannot be
explained by a single fractal dimension.

Rényi function which is also known as the deterministic partition
function plays a key role in multifractal analysis.

Leonenko and Shieh (2013) computed the Rényi function for three
models of the multifractal random fields and showed some major
schemes for the Rényi function that reveal the multifractality of
homogeneous and isotropic data.
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Definition 3

A stochastic process {X (t)} is said to be multifractal if

{X (ct)} d
= {M(c)X (t)}, (3)

where for every c > 0, M(c) is a random variable independent of {X (t)}
whose distribution does not depend on t.

Definition 4

A stochastic process {X (t)} is said to be multifractal if there exist
functions c(q) and τ(q) such that for all t, s ∈ τ,∀q ∈ Q,

E |X (t)− X (s)|q = c(q)|t − s|τ(q). (4)

where T and Q are intervals on the real line with positive length and
0 ∈ T .
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We consider a real-valued spherical field T with the mean m, and
finite second moments such that it is continuous in the mean-square
sense and its covariance function depends on the geodesic (or
angular) distance between the two points on the sphere.

Under these conditions, the isotropic random field on the sphere s2(r)
can be expanded in mean-square sense as a Laplace series

T (r , θ, ϕ) = m +
∞∑
l=0

l∑
m=−l

Ym
l (θ, ϕ)aml (r), (5)

where Ym
l (θ, ϕ) represent the spherical harmonics, i.e.

Ym
l (θ, ϕ) = cml exp (imϕ)Pm

l (cos θ), −l ≤ m ≤ l , l = 0, 1, ..., (6)

where

cml = (−1)m
[

2l + 1

4π

(l −m)!

(l + m)!

]1/2

, −l ≤ m ≤ l

and Pm
l (cos θ) denotes the associated Legendre polynomials of degree

l and order m.
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We introduce the following conditions for the spherical random fields
on R3 :

Definition 5

(Condition A
′′

)
Let the random field Λ = {Λ̃(x), x ∈ s2(1)} be an isotropic random field
such that

E Λ̃(x) = 1, Var Λ̃(x) = σ2
Λ <∞, Λ(x) > 0, x ∈ s2(1),

Cov(Λ(θ, ϕ),Λ(θ
′
, ϕ

′
)) =

1

4

∞∑
l=1

(2l + 1)ClPl(cos θ),
∞∑
l=1

(2l + 1)Cl <∞,

and Λ̃(i)(x), x ∈ s2(1), i = 0, 1, 2, ..., be a sequence of independent fields

such that Λ̃(i)(x)
d
= Λ̃(i)(bix), where b > 1 is a scaling factor, and we

interpret bix by bix := (1, bi ×
π
θ, bi ×

2π
ϕ) ∈ s2(1), where the modulus

algebra is used accordingly.

R.Nanayakkara Analysis of Spherical Monofractal and Multifractal Random Fields 19 / 38



Define the finite product fields on s2(1)

Λ̃k(x) =
k∏

i=0

Λ̃(i)(bix),

and the random measure on Borel σ-algebra B of s2(1)

µk(B) =

∫
B

Λk(y)dy , k = 0, 1, 2, ..., B ∈ B. (7)

We denote by µk
D−→ µ, k →∞, the weak convergence of the

measures µk to some non-degenerate measure µ, that is∫
s2(1)

f (y)µk(dy)→
∫
s2(1)

f (y)µ(dy), k →∞,

for all continuous functions f (y), y ∈ s2(1).
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The Rényi function

The Rényi function of µ on s2(1) can be defined as

T (q) = lim inf
m→∞

log2 E
∑

l µ(S
(m)
l )q

log2|S (m)
l |

, (8)

where {S (m)
l , l ,m}, l = 0, 1, ..., 2m − 1 and m = 1, 2, ..., is the mesh

formed by the mth level dyadic decomposition of the spherical surface
s2(1).

For the CMB data analysis, we use µ(Sm
l ) which equals the

cumulative CMB intensity over Sm
l .

The statistical estimator T̂ (q) is obtained using the equation (8) and
for large values of m.
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Assumption 1
(i) Assume that the correlation function ρΛ(‖x − y‖) = ρ(r) of a mother

field Λ satisfies the following conditions:

ρΛ(r) ≤ Ce−γr , r > 0, (9)

for some positive C and γ. Then, when the scaling factor

b : b > n

√
1 + σ2

Λ, on s2(1), the measures µk
D−→ µ, k →∞. Then the

random measure µ is non-degenerate and it has the finite second
moment: Eµ2(s2(1)) <∞. And also it has the stochastic
scaling-invariant (or say self-similar) property
µ(dy) = b−nΛ(y)µ̂(bdy), where the measure µ̂(dy) is independent of
Λ and has the same distribution as µ(dy).

(ii) Assume that for some range q ∈ Q = [q−, q+], both EqΛ(0) <∞
and Eµq(s2(1)) <∞.
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Theorem 1

Suppose that the condition A
′′

holds and the isotropic random field is the
restriction of the HIRF Λ(x), x ∈ R3 with correlation function
ρΛ(‖x − y‖) = ρ(r) on the sphere s2(1). We assume the above given
assumptions.

The Rényi function T (q) of the limit measure µ on s2(1) is given by

T (q) = q − 1− 1

2
logb EΛq(t), q ∈ Q.

The multifractal or singularity spectrum is defined via the Legendre
transform as

f (h) = inf
q

(hq − T (q)). (10)

and is used to describe local fractal dimensions of random fields.
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Known results about the Rényi function

Model 1: Log-Normal Scenario

T (q) = q

(
1 +

σ2
Y

4 ln b

)
− q2

(
σ2
Y

4 ln b

)
− 1, q ∈ [1, 2].

Model 2: Log-Gamma Scenario

T (q) = q

(
1− β

2
logb

(
1− 1

λ

))
+

(
β

2

)
logb

(
1− q

λ

)
− 1.

where q ∈ Q = {0 < q < λ} ∩ [1, 2] ∩ Lβ,λ.

Model 3: Log-Negative-Inverted-Gamma Scenario

T (q) = q
(

1 +
cU

2 ln b

)
− 1

2
logb

(
qβ/2Kβ(2

√
qλ)
)
−
(

1 +
1

2
logb

(
2λβ/2

Γ(β)

))
,

where q ∈ Q = [1, 2] ∩ Lβ,λ, Kλ(x) is the modified Bessel function of the third
kind.
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Models based on power transformations of Gaussian
fields

Model 4:

T (q) = q − 1− 1

2
logb

(
2qΓ(q + 1

2 )
√
π

)
, q ∈ [1, 2].

Model 5:

T (q) = q − 1− 1

2
logb EY

2kq(x) = q − 1− 1

2
logb

(
2kqΓ(kq + 1

2 )
√
π

)
.

Model 6:

T (q) = q − 1− 1

2
logb

((
2

k

)q

EY q(x)

)
= q

(
1− 1

2
logb

(
2

k

))
− 1

−1

2
logb

(
2q Γ(q + k

2 )

Γ( k
2 )

)
.
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Computing multifractal spectra for the models

Let α(q) denote the qth order singularity exponent and be defined by

α(q) =
d

dq
T (q).

Then the multifractal spectrum defined by (10) can be expressed as a
function of α by

f (α(q)) = q · α(q)− T (q).

Multifractal spectra for model 1:

f (α(q)) = 1− σ2
Y

4 ln(b)
q2, q ∈ [1, 2].

Multifractal spectra for model 2:

f (α(q)) = 1 +
β

2

(
q

ln(b)(q − λ)
− logb

(
1− q

λ

))
.
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Computing multifractal spectra for the models

Multifractal spectra for model 3:

f (α(q)) = 1 +
β

2
logb

(
2λβ/2

Γ(β)

)
− β

4 ln(b)
+

1

2
logb(qβ/2Kβ(2

√
qλ))

+

√
qλ(Kβ−1(2

√
qλ) + Kβ+1(2

√
qλ))

2 ln(b)Kβ(2
√
qλ)

.

Multifractal spectra for model 4:

f (α(q)) = 1 +
1

2
logb

(
Γ(q + 1

2 )
√
π

)
−

qψ(q + 1
2 )

2 ln 2

Multifractal spectra for model 5:

f (α(q)) = 1 +
1

2
logb

(
Γ(kq + 1

2 )
√
π

)
−

kqψ(kq + 1
2 )

2 ln 2

Multifractal spectra for model 6:

f (α(q)) = 1 +
1

2
logb

(
Γ(q + k

2 )

Γ( k
2 )

)
−

qψ(q + k
2 )

2 ln 2
.
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Dependence of the Rényi function on the parameter b

Figure: Dependence of the Rényi function on the parameter b
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Simulation methodology

There are numerous models for which explicit expressions for the Rényi
function in terms of elementary functions or even series are not available.

For such difficult cases, random field simulations can be used to obtain
realizations of random fields from theoretical models and compute empirical
Rényi functions.

Figure below shows a realization of a multifractal random field in a large
spherical window and this field was obtained from a Gaussian mother random
field Y (x) with the exponential covariance model and its variance equals 2.

Figure: Realization of a multifractal random field
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Computing the Rényi function for CMB data

Empirical Rényi functions were calculated for real cosmological data
obtained from the NASA/IPAC Infrared Science Archive.

Extensive numerical studies were conducted for different windows in
various sky locations.

Figure: Different sky windows of CMB data
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Computing the Rényi function for CMB data

Figure: Whole sky data analysis
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Computing the Rényi function for CMB data

First the Rényi function was computed for the whole sky.

It is clear from the analysis that the departure from a linear behaviour is not
substantial.

All these plots confirm only very small multifractality of the CMB data.

The Rényi functions, multifractal spectra, similar analysis and plots were
produced for different window sizes of the CMB unit sphere.

Large, medium, small and very small window sizes with areas 1.231, 0.4056,
0.0596 and 0.0017 were selected.

The Rényi function was computed for small windows located at different
places of the sky sphere such as near the pole, near the equator and other
places of the sphere.

Although different window sizes of the sphere were investigated, there’s not
that much of evidence to suggest that we have substantial multifractality.
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Computing the Rényi function for CMB data

Figure: Analysis of large and small sky windows data
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Computing the Rényi function for CMB data

Figure: Analysis of different sky windows data with Model 1

For the log-normal model we present the results for all windows and for other
models, only results for CMB data in a large window are given.

For the log-normal model the simple linear regression approach was used whereas
for the other models the non-linear regression approach was applied.

The values of the parameter a and the root mean square error for deviations of
Model 1 from the empirical Rényi function are given in the above table.

The results also confirm that multifractality is very small as for all observation
windows a is almost zero and αmax − αmin is very small.
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Conclusions

This study investigates the multifractal behaviour of spherical random fields
and some applications to cosmological data from the mission Planck.

The aim of this study is to introduce several multifractal models for random
fields on a sphere and to propose simpler models where the Rényi function
can be computed explicitly.

All Rényi functions for the specified models exhibit either parabolic or
approximately linear behaviours.

We present the Rényi function computations for different CMB sky windows
located at different places of the sphere.

All the specified models fit to the actual CMB data.

The analysis suggests that there may exist a very minor multifractality of the
data.
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Future Work

Develop statistical tests for different types of Rényi functions;

Prove that the theoretical results and the formulae for the Rényi functions
are also valid for the values of q outside the interval [1, 2];

Study other models based on vector random fields (similar to Model 6),
where the Rényi functions can be computed explicitly;

Investigate changes of the Rényi functions depending on evolutions of
random fields driven by Stochastic Partial Differential Equations(SPDEs) on
the sphere;

Apply the developed models and methodology to other spherical data, in
particular, to new high-resolution CMB data from future CMB-S4 surveys.
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Thank you
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