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Cosmological background

Image credit: NASA / WMAP Science Team
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Cosmological background

The Cosmic Microwave Background (CMB) is the radiation from the
universe since 380,000 years from the Big Bang.

In Big Bang cosmology, the CMB is an electromagnetic radiation
residue from its earliest stage.

The CMB depicts variations which correspond to different regions and
represents the roots for all future formation including the solar
system, stars and galaxies.

The unforeseen discovery of the CMB was done by Arno Penzias and
Robert Wilson who were American radio astronomers.
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Missions

Image credit: https://jgudmunds.wordpress.com

R.Nanayakkara Spherical Monofractal and Multifractal Random Fields with Cosmological ApplicationsAustMS 2020 5 / 32



Planck mission

In the year 2009, the European Space Agency launched the mission
Planck to study the CMB thoroughly.

The frequency range captured by the Planck mission is much wider
and its sensitivity is higher than that of the previous missions, Cosmic
Background Explorer (COBE) and Wilkinson Microwave Anisotropy
Probe (WMAP).

One of the aims of the Planck mission was to verify the standard
model of cosmology using this achieved greater resolution and to find
out fluctuations from the specified standard model of cosmology.

Current CMB data are at 5 arc-minutes resolution on the sphere.

Contains 50,331,648 data collected by Planck mission.
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What does CMB data look like?

Obtained using the “rcosmo” package.
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Random fields on a sphere

The spherical surface in R3 with a given radius r > 0 is
s2(r) = {x ∈ R3 : ‖x‖ = r}, with the corresponding Lebesgue
measure on the sphere σr (dθ · dϕ) = r2 sin θdθdϕ, (θ, ϕ) ∈ s2(1).

Statistical model: CMB can be viewed as a single realization of a
random field on a sphere.

A spherical random field
T = {T (r , θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, r > 0} is a random
function, which is defined on the sphere s2(r).

We deal with a spherical real-valued mean-square continuous random
field T with a constant mean and finite second order moments.
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Random fields on a sphere

Definition 1

A real-valued second order random field T (x), x ∈ s2(r), with E [T (x)] = 0 is
isotropic if E [T (x1)T (x2)] = B(cos Θ), x1, x2 ∈ s2(r), depends only on the
angular distance Θ between x1 and x2.

An isotropic spherical random field on s2(r) can be expanded in a Laplace series
in the mean-square sense.

T (r , θ, ϕ) =
∞∑
l=0

l∑
m=−l

Ym
l (θ, ϕ)aml (r), (1)

where {Ym
l (θ, ϕ)} represents the spherical harmonics defined as

Ym
l (θ, ϕ) = cml exp (imϕ)Pm

l (cos θ), l = 0, 1, ..., m = 0,±1, ...,±l ,

with

cml = (−1)m
[

2l + 1

4π

(l −m)!

(l + m)!

]1/2

.
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Multifractality

Multifractal structures are typical in nature and multifractal models
have been extensively used in the fields of geophysics, genomics,
image modelling, finance, meteorology, etc.

The concept of multifractality initially emerged in the context of
measures.

B. Mandelbrot showed the significance of scaling relations in the
setting of turbulence modelling.

A multifractal pattern is a type of a fractal pattern that scales with
multiple scaling rules in contrast to monofractals that have only
scaling rule.
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Main notations and definitions

Definition 2

A stochastic process {X (t), t ∈ Rd} is self-similar if for any non-random constant

a > 0, there exists non-random constant b > 0 such that {X (at)} d
= {bX (t)}.

Definition 3

A stochastic process X (t) is multifractal if it holds {X (ct)} d
= {M(c)X (t)},

where M(c) is a random variable independent of X (t) for every c > 0 and the
distribution of M(c) does not depend on t.

Definition 4

A stochastic process X (t) is multifractal if there exist non-random functions c(q)
and τ(q) such that for all t, s ∈ T , q ∈ Q,

E |X (t)− X (s)|q = c(q)|t − s|τ(q),

where T and Q are intervals on the real line with positive length and 0 ∈ T .
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Main notations and definitions

Condition 1

Let the random field Λ̃(x), x ∈ s2(1), satisfy

E Λ̃(x) = 1, Var Λ̃(x) = σ2
Λ̃
<∞, Λ̃(x) > 0,

Cov(Λ̃(θ, ϕ), Λ̃(θ
′
, ϕ

′
)) =

1

4π

∞∑
l=0

(2l + 1)ClPl(cos θ),
∞∑
l=0

(2l + 1)Cl <∞.
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Rényi function

Rényi function which is also known as the deterministic partition
function plays a key role in multifractal analysis.

The Rényi function computes how the measure/mass/intensity on a
surface varies with the resolution or the block size of an image.

There are several scenarios where the Rényi function was computed
for the one-dimensional case and time-series.

However, there are very few multidimensional models where it is given
in an explicit form.

Leonenko and Shieh (2013) computed the Rényi function for three
models of the multifractal random fields and showed some major
schemes for the Rényi function that reveal the multifractality of
homogeneous and isotropic data.
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Main notations and definitions

Let Λ̃(i)(x), x ∈ s2(1), i = 0, 1, 2, ..., be a sequence of independent copies of the
field Λ̃(·).

Define the finite product fields on s2(1) by

Λ̃k(x) =
k∏

i=0

Λ̃(i)(bi × x), k = 1, 2, ....

Let us introduce the random measure µk(·) on the Borel σ-algebra B of s2(1) as

µk(A) =

∫
A

Λ̃k(y)dy , k = 0, 1, 2, ..., A ∈ B.

We denote by µk
d−→ µ, k →∞, the weak convergence of the measures µk to

some non-degenerate measure µ. It means that for all continuous functions
g(y), y ∈ s2(1), ∫

s2(1)

g(y)µk(dy)→
∫
s2(1)

g(y)µ(dy), k →∞.
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The Rényi function

The Rényi function of the random measure µ defined on s2(1) is defined as

T (q) = lim inf
m→∞

log2 E
∑

l µ(S
(m)
l )q

log2 |S
(m)
l |

, (2)

where {S (m)
l , l = 0, 1, ..., 2m − 1} is the mesh constructed by mth level

dyadic decomposition of the spherical surface of s2(1).

The multifractal or singularity spectrum is defined via the Legendre
transform as

f (h) = inf
q

(hq − T (q)). (3)

and is used to describe local fractal dimensions of random fields.
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Main notations and definitions

Theorem 1

Suppose that Condition 1 holds and the isotropic random field Λ̃(·) is the
restriction to the sphere s2(1) of the HIRF Λ(x), x ∈ R3, with the correlation
function ρΛ(‖x − y‖) = ρ(r).

(i) Assume that the correlation function ρΛ(‖x − y‖) = ρ(r) of the field Λ(·)
satisfies the following condition

|ρΛ(r)| ≤ Ce−γr , r > 0, (4)

for some positive constants C and γ. Then, for the scaling factor

b > 3
√

1 + σ2
Λ, the measures µk

d−→ µ, k →∞, on S2.

(ii) Then, the Rényi function T (q) of the limit measure µ on s2(1) is given by

T (q) = q − 1− 1

2
logb EΛq(t), q ∈ Q.
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Conditions on measure µ

Previously, the random measure µ was defined as a weak limit of the
measures µk .

Therefore, it would be difficult to check moment conditions on µ as its
probability distribution is not explicitly known.

Here, we provide sufficient conditions on the scaling factor b and the
variance σ2

Λ that guarantee Eµq(B3) <∞.

Theorem 2

Let the mother field Λ(x) > 0, x ∈ R3, satisfy the conditions

EΛ(x) = 1, VarΛ(x) = σ2
Λ < +∞, Cov(Λ(x),Λ(y)) = σ2

ΛρΛ(‖x − y‖),

|ρΛ(τ)| ≤ Ce−γτ , τ > 0,

and the scaling factor b > max( 3
√

1 + σ2
Λ, e

σ2
ΛC

3 ).

Then the measures µk
d−→ µ, k →∞, and Eµq(B3) < +∞, for q ∈ [1, 2].
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Conditions on measure µ

The most known results are proved only for q in [1,2].

Remark 1

The conditions on b and σ2
λ that guarantee Eµ4

k(B3) < +∞ are also sufficient for
Eµq(B3) < +∞, q ∈ [1, 4]. Then, it follows from

Eµ4
k(B3) =

∫
B3

∫
B3

∫
B3

∫
B3

k∏
i=0

E

 4∏
j=1

Λ(i)(yib
i )

 4∏
j=1

dyi ,

that one can impose some additional assumptions on the fourth order moments
E (
∏4

j=1 Λ(yjb
i )) or cumulants of the mother field Λ(·).
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Known results about the Rényi function

For the random fields on the sphere, there are three models in the
literature where the Rényi function is known explicitly.

They are log-normal model, log-gamma model and
log-negative-inverse-gamma model.

These results were obtained for exponential type spherical random
fields.

R.Nanayakkara Spherical Monofractal and Multifractal Random Fields with Cosmological ApplicationsAustMS 2020 19 / 32



Models based on power transformations of Gaussian
fields

Model 4: Let Λ(x) = Y 2(x), where Y (x), x ∈ R3, is a zero-mean unit variance
Gaussian HIRF with a covariance function ρY (τ), τ ≥ 0.

Theorem 5

Suppose that for Model 4, the correlation function of Y (x) satisfies

|ρY (r)| ≤ Ce−γr , r > 0, γ > 0, and b > max( 3
√

1 + σ2
λ, e

σ2
ΛC/3).

Then the measures µk
d−→ µ, k →∞, and the corresponding Rényi function is

equal to

T (q) = q − 1− 1

2
logb

(
2qΓ(q + 1

2 )
√
π

)
, q ∈ [1, 2].
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Models based on power transformations of Gaussian
fields

Model 5: Let Λ(x) = Y 2k(x), k ∈ N, where Y (x), x ∈ R3, is a zero-mean

Gaussian HIRF with the variance σ2 =
( √

π

2kΓ(k+ 1
2 )

)− 1
k

and a covariance function

ρY (r), r ≥ 0.

Theorem 6

Suppose that for Model 5 the correlation function of Y (x) satisfies

|ρY (r)| ≤ Ce−γr , r > 0, γ > 0, and b > max

(
3
√

1 + σ2
Λ, e

σ2
ΛC

3

)
.

Then the measures µk
d−→ µ, k →∞, and the Rényi function is given by

T (q) = q − 1− 1

2
logb EY

2kq(x) = q − 1− 1

2
logb

(
2kqΓ(kq + 1

2 )
√
π

)
.

for q ∈ [1, 2].
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Models based on power transformations of Gaussian
fields

Model 6: Let Λ(x) = 2
kY (x), k ∈ N, where Y (x) ∼ χ2(k), and the HIRF field

Y (x), x ∈ R3, has a covariance function ρY (r), r ≥ 0.

Theorem 7
Suppose that the correlation function in Model 6 satisfies the inequality

|ρY (r)| ≤ Ce−γr , r > 0, γ > 0, and b > max

(
3
√

1 + σ2
Λ, e

σ2
ΛC

3

)
.

Then the measures µk
d−→ µ, k →∞, and for q ∈ [1, 2] the Rényi function is

equal to

T (q) = q

(
1− 1

2
logb

(
2

k

))
− 1− 1

2
logb

(
2q Γ(q + k

2 )

Γ( k
2 )

)
.
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Computing multifractal spectra for the models

Let α(q) denote the qth order singularity exponent and be defined by

α(q) =
d

dq
T (q).

Then the multifractal spectrum defined by (3) can be expressed as a function of
α by

f (α(q)) = q · α(q)− T (q).

Multifractal spectra for model 4:

f (α(q)) = 1 +
1

2
logb

(
Γ(q + 1

2 )
√
π

)
−

qψ(q + 1
2 )

2 ln 2

Multifractal spectra for model 5:

f (α(q)) = 1 +
1

2
logb

(
Γ(kq + 1

2 )
√
π

)
−

kqψ(kq + 1
2 )

2 ln 2

Multifractal spectra for model 6:

f (α(q)) = 1 +
1

2
logb

(
Γ(q + k

2 )

Γ( k
2 )

)
−

qψ(q + k
2 )

2 ln 2
.
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Dependence of the Rényi function on the parameter b

Figure 1: Dependence of the Rényi function on the parameter b.
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Computing the Rényi function for CMB data

Empirical Rényi functions were calculated for real cosmological data
obtained from the NASA/IPAC Infrared Science Archive.

Extensive numerical studies were conducted for different windows in various
sky locations.

For the CMB data analysis, we use µ(Sm
l ) which equals the cumulative CMB

intensity over Sm
l .

The statistical estimator T̂ (q) is obtained using the equation (2) and for
large values of m.

Figure 2: Different sky windows of CMB data.
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Computing the Rényi function for CMB data

Figure 3: Whole sky data analysis.
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Computing the Rényi function for CMB data

First, the empirical Rényi function was computed for the whole sky and each
of the previous models were fitted to it.

The Rényi functions, multifractal spectra, similar analysis and plots were
produced for different window sizes of the CMB unit sphere.

Large, medium, small and very small window sizes with areas 1.231, 0.4056,
0.0596 and 0.0017 were selected.

The empirical Rényi function was computed for small windows located at
different places of the sky sphere such as near the pole, near the equator and
other places of the sphere.

It is clear from the analysis that the departure from a linear behaviour is not
substantial.

All these plots confirm only very small multifractality of the CMB data.

Although different window sizes of the sphere were investigated, there’s not
that much of evidence to suggest that we have substantial multifractality.
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Computing the Rényi function for CMB data

Figure 4: Analysis of different sky windows data with Model 1.

For the log-normal model, the simple linear regression approach was used
whereas for the other models, the non-linear regression approach was
applied.

The values of the parameter a =
σ2
Y

4 ln b resulting in the form
T (q) = a(−q2 + q) + q − 1 and the root mean square error for deviations of
log-normal model from the empirical Rényi function are given in the above
table.

The results also confirm that multifractality is very small as for all
observation windows, a is almost zero and αmax − αmin is very small.
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Conclusions

This study investigates the multifractal behaviour of spherical random fields
and some applications to cosmological data from the Planck mission.

The aim of this study is to introduce several multifractal models for random
fields on a sphere and to propose simpler models where the Rényi function
can be computed explicitly.

All the Rényi functions for the specified models exhibit either parabolic or
approximately linear behaviours.

We present the Rényi function computations for different CMB sky windows
located at different places of the sphere.

All the specified models fit to the actual CMB data.

The analysis suggests that there may exist a very minor multifractality of the
data.
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Future work

Develop statistical tests for different types of Rényi functions;

Prove that the theoretical results and the formulae for the Rényi functions
are also valid for the values of q outside the interval [1, 2];

Study other models based on vector random fields (similar to Model 6),
where the Rényi functions can be computed explicitly;

Develop some approaches to study rates of convergence for the obtained
asymptotics, that would serve as analogous of classical convergence rates in
central and non-central limit theorems;

Investigate changes of the Rényi functions depending on evolutions of
random fields driven by SPDEs on the sphere;

Apply the developed models and methodology to other spherical data, in
particular, to new high-resolution CMB data from future CMB-S4 surveys
which will be collecting 3D observations.
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Thank you
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